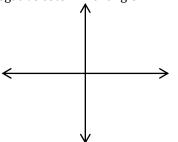
terminal

vertex

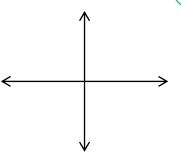
# Algebra 2

## 10-02 Angles and Radian Measure

## **Angles in Standard Position**


- Vertex on \_\_\_\_\_
- Initial Side on \_\_\_\_\_\_\_
- Measured \_\_\_\_\_\_

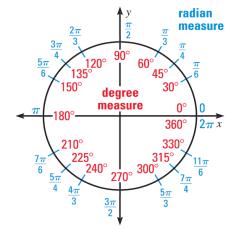
## **Coterminal Angles**


- Different angles (\_\_\_\_\_\_) that have the same \_\_\_\_\_\_
- Found by adding or subtracting multiples of \_\_\_\_\_

Draw an angle with the given measure in standard position. Then find one positive coterminal angle and one negative coterminal angle.

65°




-900°



### Radian measure

- Another \_\_\_\_\_ to measure \_\_\_\_\_
- 1 radian is the angle when the \_\_\_\_\_ = the \_\_\_\_
- There are \_\_\_\_\_ radians in a circle
- To convert between degrees and radians use fact that
- 180° = \_\_\_\_\_

### **Special angles**



sector

arc length

Convert the degree measure to radians, or the radian measure to degrees. 135°

5π

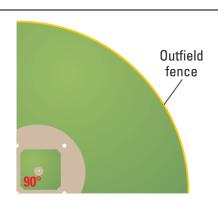
Sector

• \_\_\_\_\_ of a circle

**Arc Length** 

 $s = r\theta$ 

 $\theta$  must be in radians!


**Area of Sector** 

 $A = \frac{1}{2}r^2\theta$ 

 $\theta$  must be in radians!

Find the length of the outfield fence if it is 220 ft from home plate.

Find the area of the baseball field.



central

angle  $\theta$ 

534 #1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 29, 31, 33, 40, 42, 45, 46, 49 = 20